quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
PLUS2(s1(x), y) -> PLUS2(x, y)
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
QUOT3(x, 0, s1(z)) -> PLUS2(z, s1(0))
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
PLUS2(s1(x), y) -> PLUS2(x, y)
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
QUOT3(x, 0, s1(z)) -> PLUS2(z, s1(0))
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
PLUS2(s1(x), y) -> PLUS2(x, y)
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS2(s1(x), y) -> PLUS2(x, y)
POL( PLUS2(x1, x2) ) = max{0, x1 - 1}
POL( s1(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT3(s1(x), s1(y), z) -> QUOT3(x, y, z)
Used ordering: Polynomial Order [17,21] with Interpretation:
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
POL( QUOT3(x1, ..., x3) ) = max{0, x1 - 1}
POL( s1(x1) ) = x1 + 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT3(x, 0, s1(z)) -> QUOT3(x, plus2(z, s1(0)), s1(z))
POL( QUOT3(x1, ..., x3) ) = max{0, x2 - 1}
POL( 0 ) = 2
POL( plus2(x1, x2) ) = x2
POL( s1(x1) ) = 0
plus2(s1(x), y) -> s1(plus2(x, y))
plus2(0, y) -> y
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
quot3(0, s1(y), s1(z)) -> 0
quot3(s1(x), s1(y), z) -> quot3(x, y, z)
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
quot3(x, 0, s1(z)) -> s1(quot3(x, plus2(z, s1(0)), s1(z)))